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Abstract 

Additive manufacturing (AM) is an emerging method for cost-efficient fabrication of nuclear 

reactor parts. AM of metallic structures for nuclear energy applications is currently based on laser 

powder bed fusion (LPBF) process, which can introduce internal material flaws, such as pores and 

anisotropy. Integrity of AM structures needs to be evaluated nondestructively because material 

flaws could lead to premature failures due to exposure to high temperature, radiation and corrosive 

environment in a nuclear reactor. Quality control (QC) requires nondestructive evaluation (NDE) 

of actual AM structures. Pulsed thermography is a potentially promising QC technique because it 

is scalable to arbitrary structure size. However, detection sensitivity of this method is limited by 

noises. We investigate separation of signal from noise in thermography images using several 

machine learning (ML) methods, including new spatio-temporal blind source separation (STBSS) 

and spatio-temporal sparse dictionary learning (STSDL) methods. Performance of the ML 

methods is benchmarked using thermography data obtained from imaging stainless steel 316L and 

Inconel 718 specimens produced LPBF method with imprinted calibrated porosity defects. The 

ML methods are ranked by F-score and execution runtime. The ML methods with higher accuracy 

require longer run time. However, this runtime is sufficiently short to perform QC within a realistic 

time frame. 
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1. Introduction 

Additive manufacturing (AM) is an emerging method for cost-efficient production of low-volume 

custom and unique parts with minimal supply-chain dependence [1]. In particular, AM potentially 

provides a cost-saving option for replacing aging nuclear reactor parts and reducing costs for new 

construction of advanced reactors [2]. Metals of interest for passive structures in nuclear 

applications typically include high-strength corrosion-resistant stainless steel alloys, such as 

stainless steel 316/316L (SS316L). Because of high strength (200GPa Young’s modulus at room 

temperature), shape forming of these metals into complex geometry structures is not trivial. AM 

of such metals, which have melting range 1370oC to 1430oC, is currently based on laser powder-

bed fusion (LPBF) process [3,4]. Basic schematics of LPBF process are shown in Figure 1. 

Because of the intrinsic features of LPBF, e.g. Marangoni convection, material defects such as 

porosity and anisotropy can appear in the metallic structure [5]. Porosity can be introduced into 

AM parts due to incomplete melting of the powder particles or insufficient overlapping of the melt 

pools [6]. Oscillations in the surface of the melt pool caused by rapid heating and cooling result in 

powder ejection and splattering of the melt, resulting in surface roughness and porosity [7-9]. 

 
(a)                                                                                   (b) 

Figure 1 – Overview of LPBF: (a) Step 1 prepares the powder bed (b) Fabrication occurs in Step 

2 where porosity can be introduced into AM metallic parts due to incomplete melting of powder 

particles or insufficient overlapping of melt pools.  

 

Because reproducibility in AM is currently lower than that of conventional manufacturing, 

each structure needs to be examined nondestructively before deployment in an environment with 

high safety requirements, such as inside a nuclear reactor. Presence of porosity material defects 

could potentially combine with fatigue of AM metallic structure [10,11] due to long-term exposure 

to high temperature and ionizing radiation to decrease structure service life. In addition, corrosion 

damage to AM metallic structures from long term exposure to high-temperature reactor coolant 

fluids could be accelerated by corrosion front encountering sub-surface porosity material defects 
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[12,13]. Quality control (QC) in AM involves detection of material flaws in real-time during 

manufacturing, and non-destructive evaluation (NDE) of the structure after manufacturing [14]. 

Recently, machine learning (ML) has been explored for improving reliability of various stages in 

the AM process [15-18]. The objective of this report is to study the application of unsupervised 

ML to enhance capability of inspecting a structure in post-manufacturing. 

During manufacturing, material flaws can, in principle, can be detected using X-ray 

radiography [19] or thermography [20]. In real-time monitoring, thermography measures 

blackbody radiation due to the heat of the build with an infrared (IR) imaging camera. Relative 

variation of the temperature in the image could be attributed to material flaws. However, because 

of high variance in the temperature due to unsteady-state heat conduction and aberrations in 

thermal images due to ejected un-sintered powder covering the fused metallic structure, real-time 

flaw detection with thermography is non-trivial. Applications of X-ray radiography to both real-

time monitoring and post-manufacturing NDE are limited because of complex shape and lack of 

symmetry of AM structures. In post-manufacturing NDE, X-ray computed tomography can be 

used for high-resolution imaging of small coupons shaped in body-of-revolution symmetry form 

(spheres or cylinders).  However, this provides sampled information about the quality of the AM 

process, but not about the actual structure. For post-manufacturing NDE, techniques involving 

contact probes, such ultrasonic testing, face challenges because AM structures have rough surfaces 

which affect probe coupling. In addition, high-resolution ultrasonic tomography requires time-

consuming point-by-point raster scanning of specimens.  

Pulsed thermography imaging potentially provides a number of advantages for NDE of AM 

structures in QC because the method is non-contact, one sided, and scalable to arbitrary size 

structures [21]. Because information is recorded as an image with a megapixel camera, the amount 

of mechanical scanning is significantly reduced compared to raster scan imaging with a single 

probe. Flash thermography utilizes a high intensity flash lamp to rapidly heat surface of sample, 

and a fast-frame megapixel infrared (IR) camera to capture data of spatial surface temperature 

distribution T(x,y). The acquired data cube consists of a stack of surface temperature images taken 

at different times, T(x,y,t). Information about material internal structure is contained in surface 

temperature transients because thermal resistance of internal structures affects local surface 

temperature decay rate. For example, low density pores have lower thermal diffusivity compared 

to the rest of the solid material. This results in slower surface temperature decay in regions above 

the defects, and appearance of local temperature “hot spots.” Information obtained from 

thermography measurements is relative but can be converted to absolute scale through calibration. 

In one approach, reconstruction of 3D thermal effusivity e(x,y,z) can be obtained from the data 

cube T(x,y,t) [22]. In another approach, as discussed in this paper, temperature data cube can be 

analyzed with advanced algorithms to detect material flaws [23-25]. Because thermography can 

be used for in-service inspection and NDE of AM parts, thermographic imaging 3D data can be 

used for construction of a digital twin for monitoring of integrity of AM structures. 

QC based on flash thermography NDE depends on detection sensitivity, which is limited by 

experimental noises, such as imaging camera thermal noise, non-uniform illumination of the 
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specimen with the flash lamp. In addition, because detection of flaws is based on heat diffusion, 

contrast of “hot spots” is reduced due to blurring. In this paper, we investigate separation of signal 

from noise to enhance material flaw detection in thermography images using several machine 

learning (ML) methods. Performance of the ML methods is evaluated using the data cube obtained 

from flash thermography imaging of AM specimens. The specimens used in this study are SS-

316L and INC718 plates produced with LPBF method, which contain imprinted calibrated porosity 

defects of various sizes. The ML methods developed and demonstrated in this paper are Spatial-

Temporal Blind Source Separation (STBSS) and Spatial-Temporal Sparse Dictionary Learning 

(STSDL). The STBBS method is developed by combining wavelet-based de-noising with neural 

learning-based Blind Source Separation (NLBSS) algorithm. The NLBSS method developed 

recently for ML of thermography images, is based on combining the principal component analysis 

(PCA) and independent component analysis (ICA), which is implemented as a two-layer neural 

network. The STSDL method is similarly developed by combining wavelet-based de-noising with 

the sparse dictionary learning (SDL) method. Performance of the ML methods, as well as the 

previously developed NLBSS, and established PCA, ICA and SDL methods in detection of flaws 

in flash thermography data is ranked by F-score and algorithm execution runtime. Results of this 

paper indicate that STBSS and STSDL outperform existing methods in their capability of defects 

detection, albeit at the expense of increased runtime. However, the time to perform flash 

thermography measurements and ML analysis of images is sufficiently short for implementation 

of these methods in a realistic QC procedure. 
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2. Pulsed Thermography Imaging of Imprinted Defects 

2.1. Development of additively manufactured metallic specimens  

A set of two SS-316L and one INC718 plates was fabricated with LPBF method using EOS metal 

3D printer. Fabrication of SS-316L and INC718 plates was based on 20µm and 40µm powder 

layers, respectively. The dimensions of the plates are Length×Width×Thickness: 152mm 

×76mm×10mm. The same pattern of calibrated defects consisting of hemispherical porosity 

regions containing un-sintered metallic powder were imprinted into the SS-316L and INC718 

plates. The defects were imprinted during fabrication using an STL (sterelithography) file with a 

drawing of the pattern of hemispherical inclusions. In one of the SS-316Lplate (SSH316) and the 

INC718 plate, defects consisted of 100% porosity (high porosity). In another SS-316L plate 

(SSL316) speed and power of the laser were adjusted to yield approximately 40% porosity in the 

defect regions (low porosity).  

A computer rendering of the pattern of defects is shown in Figure 2 (top panel). A drawing 

with labels showing diameters and depths of the imprinted defects is provided in Figure 2 (bottom 

panel). Note that there are two patterns of defects on the plate: one with diameters ϕ = 5, 6 and 

8mm and depths d = 2, 3, 4, and 5mm, and another one with diameters ϕ = 1, 2, 3, and 4mm and 

depths d = 1, 2, 3, 4 and 5mm. The diameters of defects decrease along the lines parallel to the 

longer side of the plate, while the depth along these lines is held constant. Along the lines parallel 

to the shorter side of the plate, the depth increases, while the diameter is fixed along these lines. 

 
Figure 2 – (Top) 3D rendering of hemispherical porosity defects imprinted in AM specimens. 

(Bottom) Design pattern of hemispherical defects of different diameters and depths relative to plate 

surface (all dimensions are in mm) 
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Figure 3 shows the photograph of two SS-316L and one INC718 plates used in this study. The 

plates are visibly smooth on both sides. 

 
Figure 3 – Photograph of two SS-316L and one INC718 plates manufactured with LPBF method 

  

2.2. Pulsed thermography imaging system 

A schematic depiction of the flash thermography setup is shown in Figure 4 (top panel), with the 

photograph of the laboratory system displayed in Figure 4 (bottom panel). The method consists of 

illuminating material with white light flash lamp, which rapidly deposits heat on the material 

surface. In the experiment, a Balcar ASYM 6400 white light flash lamp delivers 6400MW of 

power in approximately 2ms duration flash.  A pulse trigger sends a signal to capacitor to discharge 

in a circuit containing white light flash lamp.  A megapixel fast frame infrared (IR) camera records 

time-resolved images of surface temperature distribution T(x,y,t). The acquired thermal-imaging 

data cube therefore consists of a series of 2D images of the sample’s surface temperature at 

consecutive time instants. The laboratory setup uses a FLIR X8501sc mid-wave infrared (MWIR) 

imaging camera, operating in 3-5µm band with noise equivalent temperature difference (NETD) 

of 20mK. X8501sc model provides maximum spatial resolution of 1280x1024, with frame rate at 

full window of 181Hz. The frame rate can be increased at the expense of reducing the viewing 

window. IR camera settings for all measurements in this study were 576x520 pixels window and 

216Hz frame rate. 
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Figure 4 – (Top) Schematics of flash thermography setup. (Bottom) Experimental laboratory 

setup.  

The two SS-316L and INC718 specimens were imaged with the plates positioned so that the 

spherical side of the internal defects was oriented towards the IR camera. For better absorption of 

thermal energy, all specimens were spay-painted with washable graphite paint. Two sets of flash 

thermography measurements were taken for each specimen. In one set of measurements, the 

section of each plate containing the “larger” defects was imaged (total of 12 imprinted defects), as 

can be seen in the right side of Figure 2 (bottom). In another set of measurements, sections of each 

plate containing the “smaller” defects pattern were imaged, as can be seen on the left side of Fig. 

1(b) (total of 20 imprinted defects). Imaged area of the plate per measurement is approximately 

76mm×76mm. The plates were imaged with FLIR X8501sc IR camera with 576x520 pixels 

window at 216Hz resolution rate. The time to acquire thermography data cube for each 

measurement was estimated from [22] 

2t d  ,                  (1) 

Where d is the thickness of the plate and α is material thermal diffusivity. Using the values of 

d=10mm, α=3.529mm2/s for SS-316L [26] and α=3.019mm2/s for INC718 [27] at room 

temperature, we obtain t=9s for SS-316L and t=10.5s for INC718 specimens, respectively. 
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3. Machine Learning Algorithms for Thermography Image 
Analysis 

Efficiency of QC depends on the ability to detect material flaws in thermographic images. Raw 

images obtained from flash thermography typically suffer from low visibility contrast of subtle 

features with low signal to noise ratio (SNR). This typically occurs in flash thermography images 

because of thermal noises, non-uniform illumination of specimen with flashlight, insufficient noise 

equivalent temperature difference (NETD) sensitivity threshold of the IR camera, and blurring of 

features due to diffusion-based imaging. In this paper, we investigate extraction of low SNR 

features corresponding to material defects in thermal images using unsupervised ML algorithms, 

including new STBSS and STSDL methods. Unsupervised ML aims to learn potential patterns in 

unlabeled datasets, with minimal human supervision [28]. Common algorithms used in 

unsupervised learning are clustering analysis [29] and latent variable models learning [30]. 

Clustering analysis, such as hierarchical clustering, k-means clustering, is used to group datasets 

with the same attributes into one cluster. For latent variable models learning, including the PCA 

[31], expectation maximization (EM) algorithm and blind source separation (BSS) [32], the 

approach is to learn latent features that are not directly observed but inferred from observed 

datasets. The objective of PCA is to extract principal features of datasets by reconstructing new 

basis vectors to reduce information redundancy, which follows the same learning pattern as the 

unsupervised representation learning [33]. The unsupervised representation learning, such as SDL 

and ICA aim to identify the underlying explanatory features hidden in observed data. BSS aims to 

separate each latent source signal which shares the same attributes from mixed signals, and 

combines the representation learning with clustering analysis to enhance the performance. 

3.1. Spatial-Temporal Blind Source Separation (STBSS) Algorithm 

The STBSS approach is based on previously developed neural learning based blind source 

separation (NLBSS) [25]. The improvement of the new method described in this paper is achieved 

by introducing spatial de-noising with wavelet transform [34]. NLBSS algorithm, which combines 

PCA and fast ICA to enhance defect detection in time and space by separating defects from 

background and identifying the presence of defects [18]. PCA is a commonly used ML method for 

dimensionality reduction and feature extraction, which is applied for thermography defects 

detection as principal component thermography (PCT) [35]. ICA is another frequently used 
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method for separating a multivariate signal into additive subcomponents. Figure 4 shows the flow 

chart of STBSS algorithm, the schematics of which are discussed in the sub-sections below. 

  
Figure 5 – Flowchart of the STBSS algorithm. 

 

3.1.1. Wavelet Transform spatial de-noising 

Wavelet transform is used to reduce the high-frequency thermography image noises in spatial-

domain. These noises are random variation of brightness or color information in images and 

normally include the Additive White Gaussian Noises (AWGN), which can be efficiently reduced 

by using the wavelet transformation [36]. Wavelet transforms are mathematical methods to 

perform signal analysis when signal frequency changes over time. For image signals, the wavelet 

analysis selects the appropriate frequency band adaptively, then analyzes and filters abrupt changes 

in images, such as AWGN, to improve the image resolution.  

As shown in Figure 5, wavelet transformation is applied to de-noise image noises for each 

observed thermography images X to obtain data cube 'X . The flash thermography data cube can 

be written as m n lX R   , where l is the number of images (time frames), and each image has m n  

pixels. Each image of the 3D data cube X is decomposed using wavelet transformation into four 

images with size m n , which includes one reconstruction image and three high-pass wavelet 

images. We keep the reconstruction images to form a new thermography data cube ' m n lX R   , 

and discard the high-pass wavelet images which contain most image noise. In this study we apply 

the two-level Biorthogonal wavelet transformation implemented with the 'bior3.5' wavelet filter, 
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which has advantages of filtering image noises with minimal impact on image contrast gradients. 

In the numerical experiments, the filter was implemented using MATLAB library of wavelet 

filters. 

3.1.2. Neural Learning-based Blind Source Separation (NLBSS) algorithm  

In NLBSS, we use PCA [37] to extract principal features of thermography data, thus reducing 

thermal imaging noises and artifacts. As shown in Fig. 4, PCA is used to pre-process images 𝑋′to 

obtain principal components U. Next, U become inputs to the neural learning-based ICA [25] to 

estimate independent source signals 𝑆̂, which are the thermal sources images (TSI) of defects. the 

ICA [38], implemented in a two-layer neural network structure, is applied to automatically separate 

image regions containing signatures of material defects from image regions which do not contain 

any material flaws. W is the estimation matrix for separating the mixed thermograms into TSIs of 

defects. The ICA is implemented in a neural network structure, which is composed of densely 

connected input layer (thermograms U), and an output layer (estimated source signal 𝑆̂). The input 

layer has 50 neurons, equal to the number of principal components. The output layer has 12 

neurons, equal to the number of independent components. Nonlinearity function 'pow3'
3)( ( )g u u  [38] is used as the activation function to optimize training for robust convergence. 

Next, we use the reverse entropy [38] as the objective function to measure the non-Gaussian. We 

train this two-layer neural network with 100 epochs to estimate the TSI of defects. The neural 

network structure utilizes the fast fixed-point algorithm [38] for optimization to speed up detection 

of features in thermography images. 

3.2. Spatial-Temporal Sparse Dictionary Learning (STSDL) Algorithm 

The STSDL approach is based on sparse dictionary learning (SDL) method. SDL is a 

representation learning method which aims to find the sparse representation of the data. The new 

method STSDL consists of three stages of feature extraction to enhance defects detection for weak 

defect signals: wavelet transform, singular value decomposition (SVD), and SDL. Figure 6 shows 

the flow chart of the STSDL algorithm, the schematics of which are discussed in sub-sections 

below. 
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Figure 6 – Flowchart of the STSDL algorithm. 

 

3.2.1. Wavelet Transform spatial de-noising 

As shown in Figure 6, in the 1st stage of feature extraction, we apply the two-level Biorthogonal 

wavelet transformation implemented with the 'bior3.5' wavelet filter, which has advantages of 

filtering image noises with minimal impact on image contrast gradients. The details of wavelet 

transform implementation are the same as described in Section 3.1.1. The output of the wavelet 

filter is de-noised thermography data cube ' m n lX R   , where there are l images, each having m n

pixels.  

3.2.2. Singular Value Decomposition  

We use the Singular Value Decomposition (SVD) to extract principal features of defect 

information for the 2nd stage feature extraction, as shown in Figure 6. Defects features are 

compressed in time-domain by reconstructing orthogonal thermography features to ameliorate 

thermal imaging experimental artifacts, such as uneven heating and image noises. The equation 

implementing SVD is  

T

M N M N N N N NY U H V    .                             (2) 

To apply Equation (2) to 3D thermography data cube ' m n lX R   obtained with Biorthogonal 

wavelet transformation described in Section 3.2.1, we reshape the array of m×n pixels in each 
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image into a single vector of length M=m∙n. The condensed 2D data is stored in matrix Y, where 

M and N represent the number of rows and columns, respectively (N=l is the renamed number of 

recorded thermography frames). U and V are orthogonal matrices separately containing variability 

of data and time information. H is the matrix containing the singular values of Y. Thus, by 

decomposing the thermography data Y with SVD, the matrix U is constructed with orthogonal 

basis vectors which describe the largest variability in the data using the first few columns (N1) of 

U. We use only few basis vectors of U, which contain principal features of data, as input for SDL 

to enhance detection of flaws.   

3.2.3. Sparse Dictionary Learning (SDL) 

SDL method aims to find the sparse representation of data by searching for the optimized basis 

vectors of dictionary. The dictionary includes the optimized basis vectors called atoms, which are 

linearly combined to represent defect information. Compared to BSS method, SDL allows more 

flexibility in sparse representation of defects information the atoms are not required to be 

orthogonal. In this study, we use the SDL to optimize the representation of data and further enhance 

extraction of features in thermography images corresponding to material defects. The objective 

function of the SDL algorithm is modeled as 

2 2

, 1 2 2( ') || || ||| ||
2

| ||
2

dr
R Dminimize U RD R D


   .             (3) 

In Equation (3), U is the matrix consisting of the 2D data matrix obtained with SVD. The matrices 

D and R are the dictionary matrix and representation matrix, respectively. Thus, the first term in 

Equation (3) that measures the difference between U and (RD’) models the reconstruction error, 

which is minimized to reduce information loss by forcing the algorithm to yield an optimal 

representation of the thermography data. Here the difference is measured with L1 norm (linear 

norm) which gives more robust convergence compared with L2 norm (squared norm). The second 

term imposed the constraint of sparse representation. Here r is a scaling constant that determines 

the tradeoff between the reconstruction error and representation sparsity. The third term constrains 

atoms in dictionary from reaching arbitrarily high values resulting in low values of R. In the third 

term in Equation (3), d  is a scaling penalty constant. The second and third terms are regularized 

by L2 norm to ensure sparsity and convergence for optimization.  

Direct solution of the minimization problem in Equation (3) is computationally expensive since 

the Laplace distribution is not smooth. To circumvent this issue, a two-level hierarchical form of 

the Laplacian distribution is used [39]. The conditional expectation maximization (CEM) 

algorithm is utilized to iteratively search for D, R, while de-correlating the dependency between D 

and R. Therefore, in each CEM iteration there are two expectation maximization (EM) steps, which 

consist of updating D while keeping R fixed, and updating R while keeping D fixed. Matrix 

[ ] m n

ijT t R    is introduced as exponential prior for each pre-processed element iju  to represent 

the missed data, and [ , ]R D   represents the parameters to be estimated. The constants d  and  
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r  are hyperparameters for fine-tuning optimization. Then, in one EM step, we apply the Q 

function to estimate the dictionary matrix D while keeping the representation matrix R known: 

ˆ ˆˆ( | ) [log ( | , , ) | , ]TQ D E p D R U T U  .            (4) 

The Q function computes the expectation of the complete-data log-posterior regarding the missed 

data T, given the current estimates of parameters ˆ ˆ ˆ[ , ]R D  in Equation (4).               

To solve Equation (4), we apply the Bayes’s rule, take log on both sides and remove terms 

which are irrelevant to parameter D. Then the complete-data log-posterior log ( | , )p D U T  is 

represented as 

  
1 ' 2 '1ˆ ˆlog ( | , , ) log ( ) [ ( ) ]

2 2

m n n
d

ij ij i j j j

i j j

p U D R T p D t u r d d d C
       .      (5)  

In Equation (5), C is a constant which does not depend on D and R. The posterior expectation of 
1

ijt  is computed for the (expectation) E-step based on the observation that 1

ijt  follows the inverse 

Gaussian distribution. Then in the (maximization) M-step, we update the parameter estimate jd  

in each row of D by maximizing the Q function shown in Equation (4). Next the partial derivative 

of the Q function with respect to jd  is set to zero, and we obtain closed-form update equation 

' 1 'ˆ ˆ ˆ( ) .j j d j jd R R I R u     .                        (6) 

In equation (6),     1 1

1 ,...,j j mjdiag t t   , '( )ij ij iju rd   , and . ju is the jth column of U. In the 

next EM step, we update matrix R while keeping matrix D fixed by following the same procedure 

described above. The closed-form update equation is  

' 1 '

.
ˆ ˆ ˆ( )i r ii ir D D I D u     .                              (7) 

In equation (7),     1 1

1 ,...,i i indiag t t    and .iu is the ith row of U. Then, the convergence criteria 

is set as                                    

' ' 1

2

2

|| ( ) ( ) ||

|| ||

i iRD RD

U



 .                         (8) 

Here L2 normalization is used for calculating the convergence criteria, where   is the threshold 

set to be
35 10   . If the convergence criterion is satisfied, which means that the difference 

between old and new values from SDL reconstruction is small, then parameters R and D are used 

to further extract features from thermography data to enhance defects detection. Otherwise, we 

apply the CEM algorithm for the next iteration to update parameters R and D. 
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4. Benchmarking of Machine Learning Algorithms 
Performance 

Performance of ML algorithms in extracting features corresponding material flaws in images was 

evaluated using flash thermography data. Visualization of ML performance results in flaw 

detection in images is presented in Figure 7 and Figure 8. A total of 36 images is shown in Figure 

7 and Figure 8. Data was obtained from measurements performed on SSH316 (high porosity 

defects), SSL316 (low porosity defects), and INC718 specimens. Separate thermography 

measurements were performed for large defects (see Figure 7) and small defects patterns (see 

Figure 8) in all plates, for a total of six measurements. In both Figures 7 and 8, there are six rows, 

with the labels indicating the types of ML algorithms used in the analysis. There are three columns 

in each figure, with labels indicating the types of AM specimen used in the corresponding flash 

thermography measurement. For baseline comparison, we include commonly used ICA, PCT, and 

recently developed NLBSS. Performance of STBSS algorithm, described in Section 3.1, is 

compared to the preceding three methods. Next, for baseline comparison, performance of SDL 

algorithm is shown. This is followed by demonstration of results obtained with the new STSDL 

algorithm described in Section 3.2. 

 
Figure 7 – Visualization of ICA, PCA, BSS, STBSS, SDL and STSDL algorithms performance in detection of 

pattern of large imprinted defects in SSH16 (high porosity), SSL316L (low porosity), and INC718 specimens. 
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Figure 8 – Visualization of ICA, PCA, BSS, STBSS, SDL and STSDL algorithms performance 

in detection of pattern of small imprinted defects in SSH16 (high porosity), SSL316L (low 

porosity), and INC718 specimens. 
 

Results of benchmarking ML algorithms performance using F-score and execution runtime are 

shown in Figure 9. The F-score, which is a measure of test accuracy, indicates how well the ML 

algorithms separate true signal from noise. There were 12 imprinted “larger” defects and 20 

imprinted “smaller” defects. The F-score is proportional to how many defects from the total set of 

imprinted defects were detected. The values of the F-score are between 0 and 1, with the higher 

number indicating better accuracy. The F-scores in Figure 9 were calculated as 

   

 2

1
 score

Precision Recall
F

Precision Recall





  


 
,    (9) 

    p p pPrecision T T F   and    p p nRecall T T F  .  (10) 
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Here Tp = true positive, Fp = false positive, Fn = false negative, β is the tradeoff (relative) parameter 

which determines if Precision or Recall is more important. In this study β = 1, which means 

Precision and Recall are equally important. 

 
Figure 9 – Benchmarking of ICA, PCA, NLBSS, STBSS, SDL, and STSDL algorithms 

performance in detection of imprinted flaws in SSH36 (high porosity), SSL316 (low porosity), and 

INC718 specimens. The larger and smaller defect patterns contain a total of 12 and 20 imprinted 

defects, respectively. Performance of the algorithms was ranked by the F-score (values between 0 

and 1) and execution run time (measured in seconds). The largest value of F-score for each AM 

specimen and defect pattern is indicating by highlighting (color on-line). 

 

The runtime of algorithms in Figure 9 is measured in seconds. Detected defects for each entry 

in Figure 9 are listed as a set of numbers (ϕ, d), where ϕ is the defect diameter and d is its depth, 

all measured in mm (see Figs. 1 and 2). All benchmarking studies were performed on Intel (R) 

Core (TM) i7-8750H, CPU@2.20GHz 2.21GHz computer with 16GB RAM. 

In general, internal defects with smaller diameter and deeper location are more difficult to 

detect. The reason is that defects of smaller size have smaller thermal resistance visible on the 

plate surface because heat can diffuse around these defects. In addition, thermal resistance of 

defects located deeper below the surface manifests itself when surface temperature has decayed to 
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the level close to the ambient temperature. These factors result in low thermal contrast “hot spots” 

on the specimen surface, which are difficult to detect. Further improvements in flash thermography 

hardware and ML algorithms would be needed to detect smaller and deeper-located defects. When 

comparing the materials, detection is generally better for SSH316, followed by SSL316 and 

INC718. This can be understood from the fact that SS316 has higher thermal diffusivity than 

INC718, and from higher thermal resistance contrast in high porosity SSH316 compared to low 

porosity SSL316.    

The STBSS and STSDL methods have similar performance results, which is better than those 

of other ML algorithms considered in this study. The F-score of STBSS is slightly better for 

smaller defects, while the F-score of STSDL is slightly better for larger defects. The increase in 

accuracy is accomplished at the expense of increasing run time. For both STBSS and STSDL the 

runtime can be on the order of 100s. This is the time to process images for material section with 

dimensions of approximately 76mm×76mm×10mm. Additional time of approximately 10s to 

acquire images with flash thermography should be added to estimate the total time. For a structure 

with dimensions of 22.8cm×22.8cm×10mm, for example, the total processing time would be 

approximately 1000s or approximately 17min. In principle, this reasonable time for implementing 

QC for low-volume AM of structures. Processing time can be further reduced by using more 

powerful computing resources. 
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5. Conclusions 

Additive manufacturing (AM) offers the potential of reduced-cost manufacturing of structures for 

nuclear energy applications. Laser powder bed fusion (LPBF) is a common method for AM of 

stainless steel 316L (SS316L) and similar high-strength corrosion-resistant metals and alloys used 

for passive structures in nuclear energy application. However, common defects appearing in 

structures manufactured with LPBF include porosity regions. Quality control of AM structures is 

needed before their deployment in the harsh environment of a nuclear reactor. In this paper, we 

have investigated application of ML image analysis algorithms to QC of metallic structures 

produced with LPBF method. The ML images were applied to flash thermography data obtained 

from NDE of SS316L and INC718 specimens with imprinted calibrated porosity defects. Two 

novel ML approaches were introduced to enhance detection of weak signals, the STBSS and 

STSDL. The former method consists of using wavelet transform de-noising, orthogonal 

decomposition of data with PCA, and separation of defects with ICA. The latter method also uses 

wavelet transform de-noising, but non-orthogonal data decomposition with SDL. Results of 

application of ML algorithms to thermography data indicate that, in general, smaller defects are 

detectable when they are located closer to the surface. STBSS and STSDL have similar 

performance, with STBSS showing slightly higher sensitivity in detection of smaller defects. Both 

STBSS and STSDL have better sensitivity in detection compared to other ML algorithms 

considered in this study. However, the increase in sensitivity is associated with increase in runtime. 

Nevertheless, the run time is sufficient to enable QC of low-volume AM of structures. Further 

enhancement in sensitivity of detection of defects will be investigated using a microscopic lens to 

achieve higher number of pixels per image of flaws. Future work will involve utilizing non-linear 

machine learning algorithms, such as Sparse PCA, ISOMAP, and deep representation learning 

[30], such as the convolutional neural network, auto-encoders, to efficiently extract features from 

thermography images. 
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